International Journal of
Multiphase
Flow

PERGAMON International Journal of Multiphase Flow 27 (2001) 15551577

www.elsevier.com/locate/ijmulflow

Wave- and turbulence-induced secondary currents in the
liquid phase in stratified duct flow

M. Nordsveen
Studsvik Scandpower AS, P.O. Box 15, Kjeller 2027, Norway

Received 23 December 1999; received in revised form 30 January 2001

Abstract

Turbulent gas-liquid stratified flow in near-horizontal, straight ducts with a regular two-dimensional
wavy deformation of the interface has been studied. In this flow regime strong mean secondary currents
have been observed. It was previously shown that these secondary velocities in the liquid phase may result
from an interaction between wave pseudomomentum and mean axial velocity. In the present work also a
model for turbulence-induced secondary flows due to anisotropy in the Reynolds stresses has been con-
sidered. For a wide duct case it was seen that the wave field model generated larger secondary flows than the
ones induced by the turbulence model. However, the best agreement with the experimental results was
obtained when the two effects were combined. For a more narrow duct the models indicated that waves and
turbulence can be of equal importance in inducing secondary currents. © 2001 Elsevier Science Ltd. All
rights reserved.

Keywords: Duct flow; Secondary currents; Regular waves; Wave pseudomomentum; Anistropic turbulence; ASM-
model

1. Introduction

When gas and liquid flow co-currently through a horizontal duct, stratified flow occurs at fairly
low flow rates with the heavier liquid flowing along the bottom of the duct with the gas above the
liquid. This regime has been studied by several researchers and it can be divided into two main
subregimes; the stratified smooth and the stratified wavy regime. In the wavy regime the interface
between the liquid and the gas is characterized by complicated wave patterns and several new
subregimes have been introduced according to the wave structure. Hanratty and Engen (1957),
Akai et al. (1977), Suzanne (1985) and others have identified a subregime with quite regular
deformation of the interface with two-dimensional waves or three-dimensional “pebbled” struc-
tures. Together with this regular wave field, Suzanne (1985) observed a strong mean secondary
flow, which formed a cellular structure with two rolls in the liquid phase and two rolls in the gas
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phase. The liquid was flowing up near the walls and down in the middle of the duct, while the gas
was flowing up in the middle and down near the walls. The flow field was fully turbulent in both
the gas and the liquid phase. Suzanne conducted his experiments in a duct with rectangular cross-
section. However, in a similar investigation, Strand (1993) observed the regular wave regime with
transverse secondary flows also in a circular pipe.

For the stratified smooth regime, Suzanne found no secondary currents in the liquid in the
middle of the duct (liquid width to height aspect ratio of about five). This indicates that the strong
secondary currents in the presence of waves are caused by the wave field. However, also turbu-
lence is known to generate secondary currents. Nikuradse (1926) measured mean axial velocity
distributions in turbulent flow through several closed geometries as well as an open rectangular
channel. He observed that in geometries with non-circular cross-section, lines of constant axial
velocity are displaced more towards the corners than for a similar laminar flow. Prandtl (1926)
suggested that the bending of the velocity contours was caused by turbulent generated mean
secondary flow towards the corners. Einstein and Li (1958) showed theoretically, for single phase
turbulent flow in a straight conduit, that anisotropy in the turbulent Reynolds stresses can in-
troduce axial mean vorticity (secondary currents) by
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where /v, Vv and «/v' denote turbulent Reynolds stresses per mass in the cross section. i. is the
axial unit vector, x is the horizontal, transversal coordinate and y is the vertical coordinate.
Brundrett and Baines (1964) measured all Reynolds stresses in turbulent flow in a horizontal
square duct and deduced that differences in normal stresses (Sg,) are necessary to initiate axial
mean vorticity. Perkins (1970) conducted experiments for developing flow near one corner of a
square duct and found that the terms Sy, and Sj,, were of equal importance and interpreted the S,
term as a generating term and the S;,, term as a transport (diffusive) term. This was confirmed by
Huser (1992) who performed direct numerical simulations (DNS) of Navier—Stokes equation in a
squared duct. Naot and Rodi (1982) applied an algebraic Reynolds stress (ASM) model to predict
turbulence generated secondary currents in open channel flow with a free surface not disturbed by
waves, and Nezu and Rodi (1985) measured secondary velocities in open channel flow and related
these flows to the turbulence. In Naot and Rodi’s computations and in the measurements of Nezu
and Rodi, the secondary velocities attain their largest values close to the lateral walls with rela-
tively small values, a few liquid heights away from the lateral walls. This is in agreement with
Suzanne’s (1985) findings of zero secondary flows in the middle of a relatively wide duct for
smooth stratified flow.

When reviewing wave-induced ’cross-flow’ currents, Langmuir circulation occurring in lakes
and oceans is of interest. When wind blows over the water surface and generates waves, numerous
streaks parallel to the wind direction may be observed. Langmuir (1938) discovered that the
streaks were convergence lines between counter rotating vortices below the surface. Craik and
Leibovich (1976), Craik (1977) and Leibovich (1977) presented models (denoted CL1 and CL2,
respectively) where the vortices are induced by interactions between Stokes drift due to the wave
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field and a weak shear flow induced by the wind. The two CL mechanisms can be discussed in
terms of ““vortex forces” (Leibovich, 1983) in the vorticity equation given by

ScL = (W W, — W5 W, )i, (2)
—~ =
ScLi ScLa

where w° and W denote the Stokes drift and mean velocity in the wind direction z, respectively.
Subscripts ,x and ,y mean differentiation with respect to x and y. In the CL1 model a non-zero
Scr1 term is produced by an interaction between the mean shear flow’s vertical variation and
horizontal (x-direction) variation of the Stokes drift. In the CL2 model a non-zero Sci» term is
produced by an interaction between the mean shear flow’s horizontal variation (x-direction) and
the vertical variation of the Stokes drift.

An important difference between flow in the ocean and in ducts is the relative magnitude be-
tween the mean shear flow and the wave perturbation. In the ocean, the wind-induced shear stress
is weak and the wave field in the CL models is regarded as irrotational. In duct flow, there is a
strong shear flow and the wave field is not essentially irrotational. Nevertheless, Benkirane et al.
(1990) applied a CL2 model for the liquid phase in duct flow and obtained secondary velocities
which agreed fairly well with Suzanne’s (1985) measurements.

Nordsveen and Bertelsen (1996) developed a model for the liquid phase in duct flow with a
wave field composed of two crossing linear wave trains interacting with a strong mean flow giving
a rotational wave solution. Reynolds averaging with a decomposition of the flow field into a
mean, a wave and a turbulent component was applied. This gave a mean momentum equation
with a turbulent Reynolds stress term and a wave Reynolds stress term. Mean secondary currents
were induced by the wave field through the wave Reynolds stress term. However, the secondary
currents were small compared with Suzanne’s (1985) measurements.

By applying the generalized Lagrangian mean (GLM) theory of Andrews and Mclntyre (1978),
Nordsveen and Bertelsen (1997) showed that secondary velocities in the liquid phase may result
from an interaction between wave pseudomomentum per unit mass and mean axial velocity. This
interaction takes the same form as the Craik and Leibovich “vortex forces” but with wave
pseudomomentum per unit mass P, replacing Stokes drift:

SQ = (Pz.,xW,y _Pz.,yWX)iz- (3)
— ——
Sa1 S

This is a more general expression since the assumption of a weak shear flow is not invoked and
interactions between a strong shear flow and waves entailing a rotational wave field are included.
A sketch of the two mechanisms is shown in Fig. 1. The variation of the wave pseudomomentum
across the duct interacts with the vertical variation of the axial velocity giving the S, term. The
variation with depth of the wave pseudomomentum interacts with the variation of the axial ve-
locity across the duct giving the So, term. Both the axial velocity and the wave field decrease with
depth in duct flow. The axial velocity varies laterally, going to zero at the walls, and a lateral
variation of wave pseudomomentum is present due to a varying wave field amplitude, as measured
by Suzanne (1985). Magnaudet (1989) and Line et al. (1996) showed that such an amplitude
variation can be caused by the existence of a caustic between the lateral wall and the center of the
duct. Thus all the necessary gradients to obtain non-zero Sg; and So, seem to be present in wavy
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Fig. 1. A sketch of the quantities involved in the wave pseudomomentum — shear flow vortex forces: (a) Soi; (b) Sa».

stratified duct flow. In the model by Nordsveen and Bertelsen (1997) the interaction between wave
pseudomomentum and the strong shear flow in ducts gave secondary velocities which agreed fairly
well with Suzanne’s (1985) measurements. So, was found to be one order of magnitude larger than
Sq1 for this case and was the principal source for the secondary currents. Interesting is that the curl
of the wave Reynolds stress term used in the work by Nordsveen and Bertelsen (1996) was
identical to Sg; invoking their wave field model. This explains why the Nordsveen and Bertelsen
(1996) model gave too small secondary flows.

For the strong shear flow and rotational wave field, Nordsveen and Bertelsen (1997) found that
generalized Stokes drift and wave pseudomomentum per mass are significantly different. This is in
contrast to the irrotational wave field case used in the CL theories (see above) for which Andrews
and Mclntyre (1978) showed that wave pseudomomentum per mass is to a leading order equal to
the Stokes drift. Nordsveen and Bertelsen (1997) found that wave pseudomomentum for the ir-
rotational and rotational wave fields was very similar and that it was the Stokes drift which was
changed considerably. This entails that the wave pseudomomentum secondary flow sources used
by Nordsveen and Bertelsen (1997) for a strong shear flow are similar to the CL — Stokes drift
secondary flow sources for a weak shear flow.

In the present work, both wave and turbulence-induced secondary currents are considered. In
the previous works mentioned above, Benkirane et al. (1990) and Nordsveen and Bertelsen (1997)
modelled wave field-induced secondary currents with fairly good agreement with the measure-
ments by Suzanne (1985). However, there were some discrepancies between predicted and mea-
sured secondary currents and particularly so close to the lateral walls. We believed this could be
due to the neglect of turbulence-induced secondary flow and this initiated the present work where
the ASM model of Naot and Rodi (1982) has been incorporated in the previous model of
Nordsveen and Bertelsen (1997). Simulations with only turbulence-induced secondary flows, with
only wave-induced secondary flows and with combined wave- and turbulence-induced secondary
flows are performed.

The Naot and Rodi (1982) model was developed for open channel flow not disturbed by waves
and direct interactions between waves and turbulence have not been taken into account. This has
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been addressed in other studies and we refer to the work by Magnaudet (1989) who analyzed wavy
stratified duct flow and the interactions between waves and turbulence.

2. Mathematical models

A sketch of the flow problem is given in Fig. 2. A Cartesian coordinate system (x, y, z) is used,
where for a horizontal duct, x is the horizontal, spanwise direction, y is the vertical direction and z
is the axial direction. The inclination angle of the duct is denoted y. The bottom of the duct, the
mean liquid height and the lateral walls are given by y = 0, y = Hy and x = +Ly, respectively. The
liquid flow is assumed incompressible and Newtonian under the influence of a constant gravi-
tational field. v = (u,v,w) and p denote the velocity and pressure field, respectively. The flow is
turbulent and the interface between the liquid and the gas is assumed to be deformed by linear
harmonic two-dimensional waves. The interface deviation 5 is modelled as

n = 2a sinlky(z — ct)], 4)

where 2a is the amplitude of the waves, &, is the wave number, ¢ is the wave speed and ¢ is time.
This gives a wave field with a constant wave amplitude across the width of the duct.

Suzanne (1985) measured a varying wave amplitude with about a doubling from the middle of
the duct towards the lateral walls. Magnaudet (1989) and Line et al. (1996) showed that this
amplitude variation can be caused by the existence of a caustic between the lateral wall and the
center of the duct. There is no attempt to model this in the present work. Nordsveen and Bertelsen
(1997) applied both a constant wave amplitude and a cross-stream varying amplitude which was
the result of two crossing wave trains propagating with equal and opposite angle to the axial
direction. The crossing waves gave zero amplitude in the middle of the duct and thus overesti-
mated the lateral variation and the authors reported the best agreement with Suzanne’s (1985)
secondary flow measurements with the constant wave amplitude model, Eq. (4).

The waves are approximately linear when

e, = max(2a/2,2a/H) < 1, (5)
where 4 is the length of the waves. The mean secondary velocities are small compared with the
mean axial velocity. This entails that

e =max(U/ W,V /W) < 1, (6)

where U, V denote the mean velocity components in the x- and y-directions, respectively, and W
is the bulk velocity.

y
— A
Gas o
k’\ .
—— Liquid -z
(Y e —— > X
(a) (b) Lw

Fig. 2. A sketch of the duct flow problem: (a) axial cut; (b) cross-section.
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Time and phase averages of a field quantity f(x, z) are defined by (Reynolds and Hussain, 1972)

700 =Jim 7 [ 1o )
0 0) = fim s > (x4 ), ®)

respectively, where 7 is the period of the regular wave component. By applying these averages the
flow field, f'is decomposed as f = F + f + f, where F = f is the mean component, f = (fy—Fis
the wave component and /" = f — (f) is the turbulent component.

2.1. Equations for the mean field

The GLM theory of Andrews and Mclntyre (1978) was used by Nordsveen and Bertelsen
(1997) to develop an equation for the Lagrangian velocity field, which subsequently was trans-
formed to an equation for the Eulerean velocity field. The Navier-Stokes equations for incom-
pressible flow were first phase averaged and the GLM theory was applied to the phase averaged
field. A Lagrangian mean operator ( ) defined by

70 = X+ &x 1),0), 9)

where (') in the present case is the time average, Eq. (7) was used. &(x, ¢) is the displacement due to
the regular wave field about position x. The wave pseudomomentum per unit mass P is given by

P= (Px7Py7Pz) = —V§ 'vl7 (10>

where v is the fluctuating part of the Lagrangian velocity field defined as v/ = (v(x + &(x, ¢),1)) — V",

which for small amplitude waves can be expressed as v/ = v+ & - VV + O(e}). The Eulerean mean
momentum equations developed by Nordsveen and Bertelsen (1997) read:

V- (VV) = =V — V-VV + P.W,i, + P.W.i,, (11)

where . =p~/p + P - v-V/2. p is the density and ¢ is the potential due to the gravity field. v’
and v are the turbulent and wave velocity fields, respectively, and ¥ is the axial component of the
mean velocity field V. In developing the present form of the mean momentum equations, linear
waves were assumed and interactions between waves and turbulence were disregarded. Interac-
tions between the wave field and the mean secondary velocities were also disregarded since the
secondary velocities are much smaller than the axial velocity. The fact that wave pseudomo-
mentum and Stokes drift have mainly non-zero components in the axial direction was also uti-
lized. Molecular viscosity terms are also disregarded in solving the equations in the fully turbulent
region only, with ‘laws of the wall’ as boundary conditions.

By applying the curl operator on Eq. (11), the vorticity equation with the axial vorticity sources
discussed in the introduction is obtained:

VX V- (VV) ==V X V-V + (P, W, — P.,W,)i.. (12)
——  N——

Sal S
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The mean flow field has to fulfill the continuity equation
V-V=0. (13)

2.2. Equation for the wave field

The momentum equations for the wave field, also used by Nordsveen and Bertelsen (1996,
1997), are obtained as the difference between the phase averaged (8) and the time averaged (7)
Navier-Stokes equations (see Reynolds and Hussain, 1972). These equations are simplified, ap-
plying an order-of-magnitude analysis considering that W ~ W, U ~V < W and v < W.
Molecular viscosity effects, as well as the difference between the phase averaged and time averaged
turbulent Reynolds stress tensors, are neglected. In addition the variation in the mean axial ve-
locity across the width of the duct is not taken into account. This last simplification is not valid
close to the lateral walls. The momentum equations for the wave field read

~ N 1

where

w(
W (y) 2Lw/ (x, )

is the average of the axial mean velocity over the width of the duct.
The wave flow field has to fulfill the continuity equation

V-5=0. (15)

A solution of the above momentum and continuity equations subject to the interface deformation
is given by

u=0, (16)

0= ¢(y) coslkw(z — )], (17)

w=— ¢,) sin[ky(z — ct)], (18)
where ¢(y) is the solution of Rayleigh’s stability equation

(W =)y~ ko) = ¢,y = 0. (19)
The corresponding displacement field, given by Craik (1982), reads

& =0, (20)

()
= — sin|ky, (z — ct 21
g w7 —o) [kw(z — c1)] (21)
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2.3. Equations for the turbulent field

Both a £ — e model and an ASM model have been used. The £ — e model is applied, when only
wave-induced secondary currents are considered. The ASM model is applied when turbulence-
induced secondary currents are considered.

2.3.1. k — € model
When using the & — € turbulence model, the Reynolds stresses per unit mass are described with
the generalized Boussinesq hypothesis:

_ 2
—VV =v,(VV+VV") - 357, (23)
where .# is the unit tensor, k is the turbulent kinetic energy per unit mass and v, is the eddy
viscosity modelled by the k£ — € turbulence model v, = ¢,k* /¢, where € is the dissipation rate of k.
We adopt the transport equations for k£ and € as given by Rodi (1980)

V. Vk=V- (;fwc> +1(VV+VV): UV —¢, (24)
k Pt
V- Ve=V-_ (U—Ve> +%(C16P/€—0256). (25)

The constants in the turbulence model are given in Table 1.

2.3.2. ASM model

The algebraic stress model (ASM) due to Naot and Rodi (1982) has been applied. The ex-
pressions for the stresses are obtained by simplifying the Reynolds stress equations of Launder et
al. (1975). Both convective and diffusive transport of Reynolds stresses are neglected. The Rey-
nolds stresses per unit mass in the axial momentum equation are given by

W — _vth)ﬁ (26)

vw = —v,W,, (27)
where

c1 +2.5¢3f5 k2
= | — =, —, 28
t [01+203f2 }cye (28)
C1 C1 k2

— —. 29

K [(01—1—1.503]‘2)(01—1—203]’2)]6’ € (29)
Table 1

Constants in k& — e turbulence model
¢, =0.09 or=1.0 o. =13 cie =144 e = 1.92
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The f>-function, given by Eq. (A.7) in Appendix A, is a free surface modification function. For
closed ducts this term is neglected and the standard k& — e model for eddy viscosity is obtained for
the stresses in the axial momentum equation. Other functions in the above stresses are given in
Table 2.

The fi-term, given by Eq. (A.1) in Appendix A, is a near-wall modification term which is a
function of the integrated distance from all surrounding walls. The Reynolds stresses in the cross-
section momentum equations are given by:

S k R
wu' = Ak + A= (WwW, —vww,) —ZCH—U +% ", (30)
c :
__ k —— — K
V'V = Ask + Ay — (VW W, —uwW,) — 2¢,—V,, (31)
€ ' €
_ k—— — K
u’v’:As—(v’w’Wx—i—u’w’VK)—cH (Uy+7Vy), (32)
€
where
2 p 1
Ai==a—% -1 — 33
1 3(06 2+Cl ><C1>7 (33)
2 p 1
Ay == (o—% 34
T3\rTa e ><cl+203f2> (34)
B
Ay =— 35
2 c ) ( )
B
Ay = ——, 36
4 C1 + 26‘3f2 ( )
B
S — 37
(6] + (3/2)0;](‘2 ( )
k and e in the above algebraic stresses are given by the following transport equations:
V.Vk= <Ek’x> + <szk > + P —e (38)
O x O >
Vi v €
V- Ve= <a_t€€’x> . + (6—%@) , +ep (P; — cac€). (39)

Table 2
Empirical functions in the Reynolds stresses

cl ) Cu o B Y
1.5-0.5f 0.1 0.09 0.7636 — 0.0611 0.1091 + 0.06/1 0.182
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Table 3

Empirical constants in the ASM model
Ok [ Cle Ce
1.225 1.225 1.44 1.92

Here P, is the production rate of k given by
Pe = —uWW, —VWW, = vV} + v, WL, (40)

where gradients of secondary velocities are neglected. The constants in these equations are
presented in Table 3. Note that the Prandtl numbers are slightly changed from the standard
values. Naot and Rodi (1982) reported that this was done to obtain a better agreement with the
eddy viscosity distribution obtained from measurements in two-dimensional closed channel
flow.

2.4. Boundary conditions

Linear waves are assumed and boundary conditions for the wave field are prescribed at the
mean interface:

n,+Wn.=19, y=H, (41)
p—pgn=0, y=H, (42)
§=0, y=0. (43)

These conditions entail the following boundary conditions for the potential fulfilment of the
Rayleigh stability equation:

akw(ﬁ/ - C) = ¢7 y= HL? (44)
(W —c)¢, — W, — gaky, =0, y=Hy, (45)
$=0, y=0. (46)

In solving the equation set, a long section of the duct is considered. A unidirectional uniform
mean velocity field as well as a uniform turbulent field are specified as inlet conditions. The length
of the duct is adjusted entailing a fully developed flow field at the outlet of the duct. Symmetry
conditions are applied for the mean flow field at the middle of the duct x = 0. At the bottom and
lateral walls, the wall shear stress 7, is found from inverting the logarithmic wall function for the
tangential velocity component Ur = u, In(Ey")/x, where u, = \/t,/p is the friction velocity,
y* = yu,/v is a dimensionless wall distance, y is the distance from the wall, x = 0.42 and £ = 9.0.
The wall shear stress (decomposed into the Cartesian directions) becomes the boundary condition
for the velocity components parallel to the walls. The velocity component normal to the walls is
set to zero. k and e are specified in the logarithmic wall layer by k = u2/,/c, and € = i} /(ky). At
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Table 4
Other model parameters

Hy =0.0315m Ly =0.1m 7;(0) = 0.256 N/m? W = 0.476 m/s

the mean interface, a zero stress condition U, = 0 applies for the U velocity component. For the
velocity component a zero mean momentum flux normal to the mean interface is specified. The
boundary condition for the W velocity component at the mean interface is prescribed by the
interfacial shear stress 7;(x) condition

Ly —x\ 4

7(x) = ri(0)< 7 ) , y=H, (47)
w

previously used by Nordsveen (1995). The value 7;(0) is taken from experiments (Table 4). The

boundary condition (47) models the decrease in the interfacial shear stress towards the lateral

walls. The interfacial boundary conditions used for k£ and € are

ky,=0, y=H, (48)

€ = k3/2/(018HL)7 y = HL- <49)

These interfacial conditions for k& and e were used by Celik and Rodi (1984) for turbulent open
channel flow, and the boundary condition for ¢ was chosen to obtain the correct decrease in
eddy viscosity towards the interface. A zero gradient condition for e together with the £ — e
turbulence model used here was found to give an erroneous maximum eddy viscosity at the
interface.

3. Numerical method

The CFD code PHOENICS (Roston and Spalding, 1987) was adjusted to solve the models
outlined above. The model for the wave field was coded and the wave field—mean field interaction
terms were given as sources in the mean momentum equation. The cross-section Reynolds stresses
contain additional terms to the standard eddy viscosity terms in the PHOENICS code. These
additional terms were implemented as source terms. Also the eddy viscosity in the axial mo-
mentum equation, the k-equation and the e equation have been modified. A control volume
method with a Cartesian, staggered grid is used. The resulting finite difference equations are
solved sequentially in an efficient forward-marching solution procedure. That is, the equations are
parabolized in the axial direction and two-dimensional equation systems are solved with the
SIMPLE algorithm (Patankar, 1980), starting at the inlet of the duct, marching downstream until
a fully developed state is obtained. First a solution applying the standard £ — ¢ model was ob-
tained. This flow field was then given as inlet condition in a subsequent simulation with the ASM
model. For the open-channel flow simulations, some convergence problems were experienced.
However, by applying strong underrelaxation for the turbulence sources for secondary velocities,
a stable solution was reached.
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4. Predictions
4.1. Turbulence-induced secondary flows

The implementation of the ASM turbulence model has been validated against closed-duct
experiments by Po (1975), Lund (1977) and Gessner (1980) (PLG) and open channel flow
experiments by Nezu and Rodi (1985).

PLG conducted experiments in a 22 m long square duct with 0.2554 m between opposite walls.
They measured the mean velocities and Reynolds stresses at different positions along the duct for
different Reynolds numbers. Predictions with the implemented model are compared with the
measurements at the last position along the duct where the flow field was reported to be fully
developed. The Reynolds number based on the bulk velocity W and the hydraulic diameter Dy
was 250 000. In Fig. 3 axial and secondary velocities along wall and corner bisectors are presented.
There is excellent agreement between model predictions and the experiments for the axial velocity.
For the secondary velocities, there are small differences between the predictions and the experi-
ments. Three non-uniform grids 20 x 20, 30 x 30 and 40 x 40 were applied and small differences

H H
y/Hr - y/Hr o
0.8 F g 0.8 - N
0.8+ B 0.6 4
0.4 + 4 0.4 B
0.2 - 4 0.2 r -
O i n L L L D
0 0.20.4060.81.01.2 14 -0.01 0.02
(a) W/Wg (b)
_Yr _Yr
V2H[1.0 — VeHL ¢ .
0.8 + b 0.8 F i
0.6} . 0.6F )
0.4 F . 0.4 + 4
0.2 L d D.Z [ A
O 1 I 1 1 1 U o AL 1 L 1 ]
0 0.20.40.60.81.01.2 1.4 -0.02 -0.01 0 0.01
© W/Wa (d) V,/Wp

Fig. 3. (a) Axial velocity at wall bisector. (b) Secondary velocity at wall bisector. (c) Axial velocity at corner bisector.
(d) Secondary velocity at corner bisector. The lines are predictions and triangles are experiments of PLG.
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(a) W /Wmax (b) W/Wiax

Fig. 4. Mean axial velocity. (a) Midway between the wall bisector and the lateral wall. (b) At the wall bisector. Grid
30 x 30. V — Exp. of Nezu and Rodi (1985). Solid line — ASM-model.

only were observed for the two finest grids. The predictions presented here were obtained on the
finest grid.

Nezu and Rodi (1985) performed an experimental study of secondary currents in open channel
flow with a free surface for several aspect ratios 2Lw/Hy (2Lw is the channel width and Ay is the
liquid height). Predictions with the presented ASM model are compared with their results for a
case with aspect ratio 2Lw/Hy =2, H. = 0.1 m and bulk velocity W = 0.5 m/s. The axial ve-
locities are compared in Fig. 4 and the secondary velocity fields in a quadrant of the cross-section
are compared in Fig. 5. The correspondence between simulations and measurements is good. The
predictions were obtained with a 30 x 30 grid, which gave a (nearly) grid independent solution for
this case.

4.2. Wavy stratified flow in a wide duct

Predictions with the developed model have been compared with Suzanne’s experiment C400
(1985) conducted in a 0.2 m wide duct with a 0.1° downward slope. For this case, Suzanne ob-
served a regular two-dimensional wave field with a varying amplitude across the width of the duct.
In this work, a constant wave amplitude of 0.0012 m has been used. This is less than the maximum
amplitude close to the lateral walls and larger than the minimum amplitude in the center of the
duct as reported by Suzanne. Values of the flow parameters are given in Table 5. W, kg and ep are
the boundary conditions applied at the inlet of the duct. Predictions of secondary flow fields over
half the cross-section are shown in Fig. 6. It is seen that when only turbulence-induced secondary
flows are considered, Fig. 6(a), very small secondary flows are seen in the central part of the duct.
For this particular simulation, the shear stress at the interface was set to zero due to problems in
obtaining a stable and reliable solution with a non-zero interfacial shear stress. The downward
flow does not occur in the center of the duct, and this seemed to cause the problem. The ASM
model was originally developed for open channel flow with zero shear stress and a prediction
with zero shear stress is therefore shown. In Fig. 6(b), only wave-induced secondary flows are
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Fig. 5. Secondary velocity field over half the cross-section. (a) Experiments of Nezu and Rodi (1985), left side of duct.
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Table 5

Values describing the case which is simulated
Geometry Fluid properties Boundary conditions Wave field parameters
H. =0.0315m p = 1000 kg/m?3 Wy = 0.476 m/s a=0.0012 m
Ly =0.1m v=1.0x 107 m?/s kg = 0.05 (m/s)? ky = 64.77 m™!
y=0.1° eg = 0.05 m?/s*

7,(0) = 0.2675 kg/(ms?)

considered, while in Fig. 6(c) both effects are included. For these two latter cases, the non-zero
shear stress boundary condition given by Eq. (47) was applied. That is, when combining the two
mechanisms no convergence problems were experienced.

In Fig. 7 vertical secondary velocities at three different verticals (13, 60 and 93 mm from the
middle of duct) are presented. In Fig. 7(a—) only turbulence-induced secondary currents were
considered. The predicted vertical velocity near the middle of the duct is close to zero, in dis-
agreement with Suzanne’s measurements. Close to the lateral walls, the predicted secondary ve-
locities have the correct order of magnitude. However, near the bottom of the duct, negative
velocities are predicted while the measured ones are close to zero. In Fig. 7(d—f) only wave-
induced secondary currents were modelled. Larger vertical velocities near the central part of the
duct are predicted, but they are still less than the measured ones. Near the lateral walls, secondary
velocities with the right order of magnitude are predicted, but with larger values than measured
near the bottom and smaller values near the interface. In Fig. 7(g—i) both wave- and turbulence-
induced secondary currents were modelled. A significant improvement is observed with good
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Fig. 6. (a) The ASM simulation — turbulence-induced secondary velocity field. (b) The GLM simulation — wave-induced
secondary velocity field. (c) The ASM-GLM simulations — wave- and turbulent-induced secondary velocity field.

agreement both in the central part of the duct and near the lateral walls. Near the lateral walls, the
two effects almost cancel each other close to the bottom of the duct, while they enhance each other
towards the interface.

In Fig. 8§ the axial velocities at three different verticals (0, 60 and 93 mm from the middle of
duct) are presented. Again it is seen that the best agreement with measurements is obtained when
both turbulence- and wave-induced secondary currents are taken into account. However, there is
an overprediction in the center of the duct and an underprediction at the lateral walls.

4.3. Wavy stratified flow in a duct with aspects ratio 2

In the comparison between wave- and turbulence-induced secondary flow for Suzanne’s ex-
periment C400 (1985), it was seen that the wave field model was the larger contributor to the
secondary currents. These results were obtained for a wide duct.
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(i) ASM + GLM models at 93 mm.

Here a comparison of wave- and turbulence-induced secondary velocities for a more narrow
duct with the aspect ratio 2Lw/Hy = 2 is performed. Except for the change of Ly to 3.15 cm, all
other parameters are taken identical to the C400 case (see Table 5). The shear stress boundary
condition given by Eq. (47) was applied.

In Fig. 9 the horizontal secondary velocity U is plotted at two verticals. It is seen that the two
effects induce secondary currents of the same magnitude. By combining the two effects about a

50% increase of the secondary velocities is obtained.



M. Nordsveen | International Journal of Multiphase Flow 27 (2001) 1555-1577 1571
y L0 y 1.0 wy 1.0
HL H 3 H
0.8} 8 0.8 A 0.8 A
A o
0.6 0.6 4 0.6 o
&)
0.4} 0.4 A 0.4
a A
a
0.2¢ a 0.2 0.2
L
0 ——=2 0 s 0 ——f
0 0.5 1.0 L5 20 0 0.5 1.0 L5 20 0 0.5 1.0 .5 2.0
w w W
() Ws (b) Ws (c) Wws
1.0 1.0 1.0 —
L £ # i R
0.8 8 0.8 0.8 A
a a
0.6 a 0.6 0.6 a
a a
0.4 a 0.4 0.4 a
a 4 a
Iy a
0.2 a 0.2 0.2 a
| — G ol—a 0
0 0.5 L0 LS 20 0 0.5 1.0 LS 20 0 0.5 1.0 1.5 20
' w w w
(d) wa (e) Wws (f) Wa
v 1.0 ra vy 1.0 3y 1.0
H H HL 3
0.8 8 0.8} 0.8 A
A A
0.6 a 0.6 0.6 a
A A
0.4 a 0.4 & 0.4t 2 1
Y a
a a
0.2 a 0.2 a 0.2
£
s~ pl—a 0 :
0 0.5 1.0 L5 20 0 0.5 L0 L5 20 0 0.5 L0 L5 20
C) Wa (h) W @ "

Fig. 8. Axial velocities, solid line — predictions, triangles — experiments of Suzanne (1985). (a) ASM model at 0 mm. (b)
ASM model at 60 mm. (¢) ASM model at 93 mm. (d) GLM model at 0 mm. (¢) GLM model at 60 mm. (f) GLM model
at 93 mm. (g) ASM + GLM models at 0 mm. (h) ASM + GLM models at 60 mm. (i) ASM + GLM models at 93 mm.

In Fig. 10 vorticity sources over half the cross-section due to the wave field and the turbulent
field are presented. It is seen that the maximum vorticity source due to the turbulent field is larger
than the maximum vorticity source due to the wave field. However, the turbulent-induced source
is mainly localized to the wall-wall corner and the wall-interface intersection while the wave-
induced source acts all along the interface. For this case the integrated effects for the two phe-
nomena were similar.

The vorticity sources for the more narrow duct were quite similar to the ones predicted for
Suzanne’s case C400, but for the wide duct case the longer interface length entailed a larger in-
tegrated wave effect.
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(a) ASM model, (b) GLM model.

5. Conclusions

The objective of this work was to compare turbulence- and wave-induced secondary currents in
the liquid phase in stratified duct flow. It was previously shown (Nordsveen and Bertelsen, 1997)
that secondary velocities in the liquid phase may result from an interaction between wave pseu-
domomentum and mean axial velocity. The same wave field-mean field interactions have been
applied in the present work.

Numerous experimental, theoretical and numerical studies have also addressed turbulence-
induced secondary currents in ducts or pipes with non-circular cross-sections. These flows are
induced by anisotropy in the turbulence. The ASM developed by Naot and Rodi (1982) was
tailored to handle open channel flow and this model was implemented.
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Turbulence- and wave-induced secondary flows have been compared for Suzanne’s experiment
C400 (1985) with stratified duct flow with a regular wave deformation of the interface caused by a
concurrently flowing gas phase. Suzanne observed strong mean secondary flow, which formed a
cellular structure with two rolls in the liquid phase and two rolls in the gas phase. The liquid was
flowing up near the walls and down in the middle of the duct, while the gas was flowing up in the
middle and down near the walls. For this case, the width of the duct was 20 cm and the liquid
height was 3.15 cm (aspect ratio >6).

Using the ASM model without any wave field model, very weak secondary flows were predicted
in the central part of the duct. The turbulence-induced secondary flow was mainly generated in the
bottom wall-lateral wall corners and the lateral wall-interface intersections. It did not penetrate
all the way into the central part of the duct. The computed strength of the secondary velocities in
the corner regions was smaller than that reported by Suzanne (1985), but of the same order of
magnitude.

When using a k£ — e turbulence model (which does not generate secondary currents) and the
GLM wave field model, secondary flow was induced all over the cross-section of the duct. In the
central part of the duct, the predicted secondary velocities were still less than the measured ones.
Near the lateral walls, secondary velocities with the right magnitude were predicted, but with
larger values than those measured near the bottom and smaller values near the interface.

By applying the ASM turbulence model and the GLM wave field model, both wave- and
turbulence-induced secondary currents were modelled. A significant improvement was observed
with good agreement both in the central part of the duct as well as near the lateral walls. Near the
lateral walls the two effects almost cancelled each other close to the bottom of the duct, while they
enhanced each other towards the interface.

For Suzanne’s experiment C400 (1985), the wave-induced secondary flow was larger than that
induced by the turbulence. The maximum vorticity source due to the turbulent field was larger
than the maximum vorticity source due to the wave field. However, the turbulent-induced source
is localized to the wall-wall corners and the wall-interface intersections. The wave-induced source
acts all along the interface and with a duct width of 20 cm and liquid height of about 3 cm, the
integrated effect of the wave field became larger than that of the turbulent field with respect to
inducing secondary velocities.

Wave- and turbulence-induced secondary currents were also compared for a duct flow with the
liquid width-to-liquid height aspect ratio equal to 2. The same flow parameters as in Suzanne’s
experiment C400 were used, except that the width of the duct was reduced to twice the liquid
height. For this case, the wave and turbulence models were of equal importance for generating
secondary currents. Both models predicted a strong secondary flow all over the cross-section. By
combining the two effects, the strength of the predicted secondary velocities was increased by
about 50%.

Appendix A. Near surface correction in the ASM model
Close to walls or interfaces, near-surface corrections have been introduced to model the

damping of the normal stresses perpendicular to the surface and, by continuity, the augmentation
of the normal stresses parallel to the surface.
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A.1. Wall proximity term — function f;

Launder et al. (1975) modelled the effect of walls by specifying the empirical constants in the
pressure—strain terms to be functions of the distance from the surface. f; is a function of the
dimensionless distance from the surface and is modelled as

=" {%} (A.1)

where / is the turbulent length scale defined by

3/4 13/2 3/2
j G KT ep KT (A.2)

K € K €

with x = 0.435 and ¢p = 0.1643. With this definition of /, f; takes the value of unity in the log-
layer near a plane wall. [1/)?] is the average reciprocal of the square of the distance from the
surrounding walls and is defined as

17 2 /1

s and @ are defined in Fig. 11.
For a rectangular duct (four walls), [1/)?] is given by
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Fig. 11. Notation for calculating the average distance of point P(x,y) from surface (from Naot and Rodi (1982)).
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where x; and x; are the distances from two opposite walls, and y; and y, are the distances from the
two other walls.
For an open channel (three walls), [1/y?] is given by
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where x; and x, are the distances from the lateral walls, y, is the distance from the bottom wall and
, 1s the distance from the interface.

A.2. Free surface proximity term — function f;

Naot and Rodi (1982) pointed out that the surface-proximity correction of Launder et al.
(1975) does not produce the correct anisotropy in the Reynolds stresses close to a free surface,
where the mean velocity gradients become small. For open-channel flow predictions, they
therefore used the Launder, Reece and Rodi surface-proximity model for three solid walls and the
Shir (1973) surface-proximity model for a free surface. This surface-proximity correction, which
models anisotropy in weak shear flow better, is given by

. 3 3
¢; = C3£ (U;cl);nnknméij — EU;U?nknj — EU;{U}H;{H,)fz, (A6)

where ¢; = 0.1, i, j, k, m, n =1, 2, 3 and n is a unit vector normal to the free surface.
/> is a function of the distance from the free surface given by

[ 2
ﬁ_<UMTW+M> A7
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with ¢, = 0.16. [1/)?] is the average reciprocal of the square of the distance from the free surface
given by
{ 1 ] 1 X2y X1y

. X2 .
— == + +arcsin | ——— | +arcsin [ —— | |,
] mi\5+02 x4 (3 +23)" (2 +23)'"?

X1

(A.8)

where x; and x; are the distances from the lateral walls and y» is the distance from the free surface.
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